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Theory of dynamic acoustic radiation force experienced by solid cylinders
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A body insonified by a sound field is known to experience a steady force that is called the acoustic radiation
force. This force can also be dynamic or oscillatory, knowing that the intensity of the incident sound field
changes over timéamplitude modulation The present paper develops the theory of dynamic radiation force
experienced by a solid cylinder immersed in an ideal fluid. Analytical solutions of the equations for the
dynamic force are derived. The equations provide analytical radiation force dependencies on the acoustic field
and medium parameters. The case of compressional and shear waves’ absorption in the solid material of the
cylinder is also discussed. It is shown here that radiation force is no longer static and cannot be treated as a
steady-state phenomenon.
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I. INTRODUCTION Recently, the dynamic radiation force of ultrasound has
The acoustic radiation forcel—13 is interpreted as the been used to image the elasticity of an object, which could

time-averaged force acting on an object in a sound field. Thigﬁvﬁegreist gofg\}\;altelzghrsi?ﬂgalcg;%%noxﬁﬁg-za%ozgtroggphy
force is caused by a change in the energy density of an NCLcoustic emissions from an object excited by the dynamic

dent acoustic field. Thus, an object in the wave path thaf
t

bsorb fect d ) biected to th adiation force were used to reconstruct an image related to
absorbs or refiects sound energy 1S subjected 10 the aCoUSHE o cpanjcal propertiesuch as stiffnegqg22]. This tech-

ﬁique has been successfully used to image artery calcifica-

has been studied extensively. A detailed theoretical work on fons [22,25, breast micro-calcificationf26], calcium de-

rigid sphere was presented by Kifi] and extendefl15] to

) " posit on heart valve$27], human calcaneus and hjg8],
include the effect of the sphere compressibility. Later, Hase:
gawa and Yosiok@l6] provided theoretical and experimen- and brachytherapy metal seef9,30. More recently, the

. dynamic radiation force of ultrasound was also used to vi-

. ; o - '%rate embedded spheres to estimate the shear modulus and
elastic sphere. The acoustic radiation force on a rigid cylin-

. . . viscosity of the medium in the neighborhood of the sphere
der was also ||j\{est|gate{d7] and extende_d 'FO te_lke Into ac- [31]. In the field of material sciences the dynamic radiation
count its elasticity[18]. The effects of dissipative mecha-

) h . it d heat quct | force was used in determining resonance frequencies of dif-
nisms, such as viscosity and neat conduction, were asl‘érently shaped objec{82] and evaluating Young's modulus
studied and it was found that they drastically influence the[33]

acoustic radiation forcgl9]. .

- e . Despite the extensive use of the dynamic radiation force,
The acoustic radiation force is usually steadyforce, b Y

given that the intensity of the incident field does not chang very little work has been done on its theory. The aim of this

over time. It has been shown that the radiation force can aIsR ork is to develop the theory of trgynamicacoustic radia-
" ” . . . . . n for in li linder n example. To th
be dynamic(oscillatory), if the intensity of the incident field on force, using a solid cylinder as an example. To the best

) dulated[20]. Th : ¢ truct of the authors’ knowledge, the theoretical analysis of the
IS moduiate . Nere are various ways 1o construc adynamic radiation force on cylinders has never been studied

rr:todulate: Eound f'ﬁld' For e|>_<tar(;1plle, 0”3 clatn dUS? Ia S']rc“gll?efore. We present the theory to calculate the dynamic radia-
uitrasound beéam whose amplitude 1S modulated at low eg 14100 on a solid cylinder insonified by two ultrasound

qlger:]t(l:y'd'gr twtof mterfer,ng ulltrt;':lsound be?ms grlven Ayaves driven at slightly different frequencies and interfering
siightly ditrerent requenueédu'a. eam mpde o procucea i, 5 small region. It was assumed that the wave numbers of
dynamic radiation force at their intersection. In the first case he incident waves are coplanar and the cylinder was placed

the modulation of a single beam results in a field that is no ntirely within that region. The dual beam acoustic scattering

spatlall.y cqnfmeq and exerts a dyf‘am'c radiation force rom the cylinder is solved first. Then analytical equations
any objectincluding the transducer itsgfthat happens to be describing the dynamic components of radiation force are

|fn the'beamf.paghi In the sltlecon_d casr? ’ th(tehdytnamlclzt radlaltl(szesented. The effects of longitudinal and shear waves’ ab-
orce 1S confined {o a small region where the two uftrasoun orption inside the cylinder are also discussed. Numerical

%’“?rsggt- . mitri@i d mitri farid q simulations are presented indicating the ways in which the
ectronic addresses: mitri@ieee.org and mitri.farid@mayo.eduy, o i radiation force functiolY, can be affected by the

variations of the cylinder’'s mechanical parameters.
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1.2
Il. ACOUSTIC SCATTERING THEORY OF TWO PLANE ~ An(Xi 1) + n? - 5%2

WAVES FROM THE CYLINDER Cp= ; (5)
IN AN IDEAL FLUID An(xip) +1
Usually, the process of computing the acoustic radiation N2(AA(X ) + 1)
force is divided into two stepg1) solving the acoustic scat- n= . "22 T
tering problem, and2) determining the radiation-stress ten- An(Xi 2) +N°= 2%,
sor in the fluid. Following the work previously doh&8], we ) )
derive the acoustic radiation force experienced by a solidvhere An(Xi,) =[=%Jn(Xi W/ In(x)01,1=1,2,k=1,2.
cylinder excited by two plane waves; the velocity potential ~The total velocity potential is then
of the plane waves represented in cylindrical coordinates
(r,6,2) can be written a§34] b=+ s
5 | = A2 ey(= ) TU1,(kar) + V1 p(kar) Jcogng)e' !
& =AY, en(= )", (kyr)cogno)el st n=0
n=0 %
” . _ + A2 en(= )"Uzn(kal) + Vo p(kor) Jcogno)ee?,  (6)
+ A2 2n(= )"y (kor)cognB) e, 1 =0
n=0

whereU; ,,V1,,Uzp, Vo, and their derivatives are defined
whereA is the amplitudek; andk, are the wave numbers as

(denoted later by;,i=1,2), J,(kr) is the Bessel function of Upn= (1 +ayg 0)dn(Ker) + BrpnYn(kar),
the first kind of ordem and argumenk;r, ande, is defined
by &p= 1 and8n=2 (n: 1 y 2 y 3 ,) U2’n = (1 + azjn)\]n(kzr) + Bz‘nYn(kzr),
The scattered waves may be expressed as AU (kit)]
ro_ 1,n\Kql
- T dlkyr]
=AY, &,(-j)"dy HZ(k;r)cogng)elt
- y 0]
» 2T dlkr]
+ A2 en(= )"ty HY (Ko cogno)e 2, (2) (7)
n=0 Vin=Brpd(Ker) = agnYn(kar),
wherer)(kir) is the Hankel function of the second kind of Vo0 = Bandn(Kar) = a0 Yn(Kar),
order n and argumentkr. The scattering coefficients are
given by Vi, = d[\(/jl[ﬂ(ﬁr)]’
1
= Fi ndn(%) + %37 (X
in= LX) + % n(, ) , 1=1,2, (3 , _d[Von(kor)]
FinHZ 06) = xHP (%) Van= dlkor]

wherex;=k; a, a being the radius of the cylinder. We define From both Eqs(6) and(7) we have
the coefficientsy; , and 3; , as the real and imaginary parts

of d; ,, respectively. o
The coefficients; , are given by V=R ¢]=AD, &R, cogné), (8)
n=0
5 )
: A -B andR, is expressed by
Fiynzg[—c”_[)”] 4
P Ro=Re[(= ))TU1n(kar) + [V (ko) €2+ (= )"
wherep andp” are the densities of the fluid and the cylinder, X[Uzn(kar) + ]V n(kor)Jel“21]. 9

respectively, x; ;=XC/Cy, X 2=XC/Cp, C is the speed of
sound in fluid, ancc; andc, are the longitudinal and shear

wave velocities inside the cylinder material, respectively, I1l. DYNAMIC RADIATION FORCE EXPERIENCED
with BY THE CYLINDER
2 The radiation force is calculated by averaging the net
EATC VR n f the cylind time. T te the dynami
A+l PR AR orce on the cylinder over time. To compute the dynamic
n(Xi1 n(Xi,2) +N°= 3% component of the radiation force, the assumption in this case
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FIG. 1. (Color onling The dynamic radiation
force function(Y4(xq,X,)) curve for an aluminum
cylinder in water. The minimum at;=6 and 6x
=0 is split into two minima while varyingx(0
< 6x=<0.1). The black arrows point to the split-
ting of the resonance peaks.
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is that |w;— w,| < w;+w, so that the radiation force has a
slow time variation at the low-frequenéyw. To discriminate
this slow variation from the total radiation force, we use the

short-term time average of an arbitrary functigit) over the
interval of T at timet, defined as(x(t))=(1/T) /% T2x(t)dt
[35], where 27/ (w1 +w,) KT <27/ |y~ w,|.

Thus, it can be proved that

(RiRy1) = %(Ul,nvl,ml + U Vo1 = VinUine
= VonUznid) + %(Ul,nUZ,n+1 = UznUinm
+ Vl,nVZ,n+1 - V2,nV1,n+1)5in(Awt) + %(Ul,nvz,nﬂ

+ U0V ne1 = VipUzner = Vo nUp pe)COSA wt),
(10

<Rr,1er1+1>|kir = %(Ui,nvi,nﬂ + Ué,nvé,nﬂ - Vi,nUi,n+1
- Vé,nUé,nﬂ) + %(Ui,nué,ml - Ué,nui,ml
+ Vi,nvé,ml - Vé,nvi,nﬂ)Sin(Awt)
+ %(Uill,nvé,nﬂ + Ué,nvi,ml - V:IL,nUé,n+l

=V, U prp)CogAwt),

(RRMDler = 53U Vi pes + UV s = Vi nUg
~VonUgnen) + 5(U1nUb ey = Uz nUf g
+ Vl,nvé,n+1 - V2,nV£,n+1)5in(Awt)
+ %(Ul,nvé,ml +Up Vi i1 = VipUs e

=V,U7 nep)COSAwL),

<Rf,1Rn+1>|kir = %(Ui,nvl,nu +Uj Vane1 = ViUine
~VonUzpen) + %(Ui,nuz,nﬂ —-UpnUini
+ V1 Va1 = Vo V1 ned)Sin(Awt)
+ %(U:’L,nVZ,nH. + U5 V1ne1 = ViUz i
= V5 U1 ne)COSA ).

The radiation force per unit lengilfr) in the direction of
the wave propagation is expressed by

(F)=(Fp +(Fp +(Fr p +(Fp, 11

where

1 2 A 2
<Fr>=<——apf (—) cosed6>
2 0 ar r=a

=- 27Tap|A|22 (RIRM2lr=a
n=0
__mlAP| S
a

2 ’ ’ ' ’
= > [(X7(U1nVine1 = VipU1ned)
n=0
2 ! ’ ! ’ ’ ’
+X5(Up Va1 = VaUznen) +XXo(Ug \Ug iy
i ! ! ! ! ! H
- U2,nU1,n+1 + Vl,nV2,n+1 - V2,nV1,n+1) sin(Awt)

! ! ! ! ! !
+XXo(Ug Vo i1 + Uz Vi = VipnUg e

~V2 Ui COS(Awt)]} : (12)
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(Fo)= 1 fw(@)z cosfdé
"~\2a"), \s0/..,

2 oo
= %E n(n + 1)(R,Rys1)
n=0

mplA?| <
R > n(n+ D((Ug Vi +UzpVone = VipUr e = VoUzper) + (UgpUpnen = Uz U ner + Vi nVoner
n=0

= Vo Vine)SiN(Awt) + (Uy Vo i1 + Up Vi ner = Vi pUp ner = Vo U pep)cogAwt)) |, (13

G ow _
<Fr’0>—<pf0 (?)r:a(%>r:aSIn 0d0>

= 2mp|AI? Y [N(R R Dlr=a = (N + D(RRy1)lr=al
n=0

2
—ME Uy VXU V=XV nUl s =XV UL )+ Uy nUs s = XU U 4 X0V V.,
= {n[(x, 1nVint1 TXU2nVo i1 = X1VinUgner — X2Von 2,n+1) (XUqn 2n+1 ~ X1Y2nU1 e T XoVinVo e
n=0

- X1V2,nviyn+1)3in(Awt) + (X2Ul,nvé,n+1 + X1U2,nV:,L,n+1 - X2\/1,nUé,n+1 - X1V2,nU:,|_,n+1) COiAwt)]
= (N+ DIXU" 1 Vi a1 + XU 001V ner = X1Ve nU1ner = XoVo Uz ned) + (XU Uz i1 = XU (U1 et

+X1V1 Vo1 = XoVa V1 ns ) SIN(Awt) + (XU} (Vo naq + XU Vi et = X4Vg (Up nin = X0V jUg per)cogAwt) ]}, (14)

1 f2ﬂ ( g\p)Z g The short-term time average of the energy (&(t))
F —_— cosfde ~
(Fo= " 222 o r—a =(PA(t))/ pc?, whereP;(t)=ReP;(t)].
27Tap|A| IRy IRy 2 A%p ZJHT/Z 2 i 2 i
=— Pi(t 3 SI it + w3 Sire w.t
& E at ot (Pl =3 — (wrsirF ot + w3 irF o,
molAR[ & + 201w, SIN w1t SiN w,t)dt,
== 2 [X%(Ul,nvl,ml —ViaU1n00)
n=0 2 2
2 - (P2(D) = A2 2+ 22 4+ 10, codA0t) | (18)
+X5(Uz Vo ne1 = Vo Uz ne) + XXo(Ug nUz nis 1%2
2\U2nV2, n2, nv2, 2 2

— Uz U1 i1+ ViVonin = VoV e Sin(Awt)

+X1X(Ug nVo i1 + UV ner = VinUzpes

The short-term time average of the energy becomes
(E()) = 5pKE|A2 + 3pk3|AI? + pkiko A2 cogAwt). (19)

_VZ,nU1,n+1)C°5(A“’t)]]' (15 The radiation force for progressive waves is generally de-
noted by(F)=Y,S(E), whereY, is a dimensionless factor
called acoustic radiation force function and is the radiation
force per unit energy density and unit cross-sectional surface,
(E) is the mean energy density, aBdis the cross-sectional
area defined by the unit length of the cylinder multiplied by

On the other hand, the velocity potential of the incident
waves could be expressed with this form:

¢ =A(eert + ). (16)  its diameten(2a). Therefore,
The incident pressure can be expressed as 2a(E) = pk?alA|? + pkialAl? + 2pkik,a|Al? cod A wt)
~ 0b _ _ and(F) is expressed by
PO= P70 =ibplwngi v ag). A (F) = 28(E) Yy + 20(E) Yy + 28(EYe.  (20)

016306-4



THEORY OF DYNAMIC ACOUSTIC RADIATION FORCE... PHYSICAL REVIEW E 71, 016306(2005

I

1.5 ” J
LY
0.5
FIG. 2. (Color online The dynamic radiation
force function(Yy4(xq,X,)) curve for a brass cyl-
0.1 inder in water. The splitting phenomenon is also
observed at the minima of j(x;,x,). The black
0.08 arrows point to the splitting of the resonance
peaks
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0 s 4 . 6 8 10
4
The final expression for the radiation fordes., Eq.(11)] (F) = 2a(%pk§|A|2)Yp1 + 2a(%pk§|A|2)Yp2
is obtained after replaciny; ,,Vi,,Uzp, V2, and their de- ) )
rivatives in Eqs(12)—(15) with the use of the following re- + 2a(pki Kol Al9) Y3 Sin(Awt)
lations: + 2a(pk;koAl?) Y, cogAwt), (23)
XZ}(X) = NZy(X) = XZn41(X), where
o = _ 2 <
XZniy(X) = XZo(X) = (N + DZpis(X), (21) Yp1=-— => Lagn+ agper + 200 n@y per + 281 0Bl
1n=0
whereZ,(x) stands forJ,(x) or Y, (x) and i (24
2
[In1(3)¥n(X) = Jn (09 Yiea (9] = — - (22) .
Yp2=- X_E Lapn+ @ppe1 + 200 00 ne1 + 282 0B el
After some tough and tedious arithmetic manipulations, Eg. 2n=0
(11) can be greatly simplified to be (25)

2.5

FIG. 3. (Color onling The dynamic radiation
force function (Y4(x1,X%)) curve for cadmium
cylinder in water. Significant changes of the dy-
namic radiation force function occur at the func-
tion minima while varyingéx. The black arrows
point to the splitting of the resonance peaks.
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FIG. 4. (Color onling The dynamic radiation
force function(Yq4(x1,x%)) curve for a gold cylin-
der in water. The black arrows point to the split-
ting of the resonance peaks.

(Fg) = 2apk;ko| A2V Y5+ Y3 cog Awt — @)

Yo= 2 3 {001 3nax0) = I Insa 012 + s + e s

n=0 =2a(Ey)Y4 cogdAwt — D), (28)
+aon+ Ao pi1) +[J0(X0) Yner(Xe) = V(X)) e (%0)] where we define the dynamic energy density and dynamic
X (Bun+ Bued) + Yol Ipea(%0) = Jn(x0) Yies (060)] radiation force function as
X (Bon* Band) * [0 Ine1(x0) = In0X0)Ines () (Ea) = phakalA”, (29
+ Yn(X2) Yne1(X) = Yn(X) Yne1 (%) 1(@q naz nan Y,= \/YgTYi. (30)

+ Azt BapBoma t BonBrae) ¥ [300)Yna(x) The phase shift of the dynamic radiation force with respect
= Yn(X0)Ins1(X2) + In(X1) Yne1(X2) = V(%) Jnea(X0)] to the incident field is given byp=tarr(Y5/Y,).

X(apnBipe1 ¥ Binoni1 ~ @1 pBani1 ~ Banainin)},(26)
A. Special cases

1. The frequencies of the incident plane waves are equal

o - When the frequencies of the incident plane waves are
Y4_Ego{[‘]n(xl)‘]“ﬂ(xﬁ_‘]n(XZ)‘]nﬂ(Xl)] identical, X;=X,=X,a;n=asp,B1n=B2n and the incident
waves are equivalent to a single plane wave with its ampli-
X(Brn+ Brn+1= Ban = Banr) + [In(X2) Yne1(Xe) tude doubled. Therefore its energy is quadrupled, hence the

radiation force has four times higher amplitude. Equation

= Yn(X)Ine1(}2) (et n + @1 per) + [In(X0) Yo (%) (23) becomes

- Yn(XZ)Jn+1(X1)](a2,n + a2,n+1) + [Jn(xz)le(Xl)

F) = 2a(2pk?|A2)Y,, + 2a( 2 pk3AI2) Y., + 2a( pk;k-|A]D)Y.
= Y00 Ine1(X2) + In(X0) Vs 10%) = Y62 Ini1(x0)] (F) = 22(pIGIAF) You + 22(3PHGIA) Yoo + 22(plellA®)Va

(31
X(aa++0[a’++ w1t +)
N and by using the wronksiaf86] of the cylindrical Bessel
+ [Jn(%2) Ins1(X0) = In(X1) JIne1(X2) + Yn(X2) Y1 (Xq) functionsi.e., Eq.(22)], and from Eqs(24)—(27), it can be
= Y30 Yo 1) (@t nBoner + Bon@iner = Brnomset verified thatY;=0 andY,=Y,;=Y,=Y,. Therefore, Eq(31)

By} 27) becomes{F)=4[2a(%pk2|A|2)Yp] and the expression of, is
nEn identical to the one given by Hasegawetal. [18].

The first and second terms in E@3) are the steady compo- 2. Effect of absorption

nents of radiation force caused by each individual plane pro- Absorption of soundor ultrasoundin the cylinder mate-

gressive wave while the third and the fourth represent theial can be included by introducing complex wave numbers

dynamic components of the force at the beating frequency.into the theory37]. This principle can be directly applied to
The dynamic force can be rewritten as take into account compressional and shear wave absorption
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TABLE |. Lossless materials’ parameters used in the numerical TABLE Il. Mechanical parameters of viscoelastic materials used

calculations in the numerical calculations.

Mass Compressional Shear Mass Compressional Shear

density velocity velocity density velocity velocity
Material (10% kg/m?) ¢y (m/s) c, (m/s) Material (kg/m3) cy(m/s) c(mls)  y Y
Aluminum 2.7 6420 3040 Lucite 1.191 2690 1340 0.0035 0.0053
Brass 8.1 3830 2050 Polyethylene  0.957 2430 950 0.0073 0.022
Cadmium 8.6 2780 1500
Gold 19.3 3240 1200

the range is chosen by G5x; <10 and 0< &<0.1 in in-
crements of 0.01.The condition here is that whefx=Xx; or
inside the cylinder material, especially for polymers. TheX2: the dynamic component of the radiation force function
normalized absorption coefficients of compressiofia.,  Yd(*1,Xp) is undefined. It was verified that the shape of the

v 1) and shear wavefi.e., v, ,), respectively, are constant Ya(X1,%) curves does not vary significantly when the step
qdantities and independent of frequency, describing the bealue is decreased. The step value used in the calculations is
havior of many polymeric materials. In the theory describedextremely important because choosing a sufficiently small
above, and for viscoelastic materials, the tenpsandx,,  Step allows capturing the resonance peaks that are very

are replaced b¥; ; and¥; , given by sharp.
' ’ The special case where the frequencies of the incident
Xi1=%1(1-j%, plane waves are equéle., &=0) is also shown in the fig-
(320  ures(curve in bold, and the shape 0fy(X;,x,) corresponds
Xi2=Xi AL =jvio). to the steady radiation force functiofy calculated by Hase-

gawaet al.[18].

Calculations ofY4(xy,%,) for two viscoelastic materials
(lucite and polyethylene were also evaluatedYy(xq,Xs)
curves of these materials, listed in Table Il with their specific

The Yq4(X1,X,) relationship for an elastic cylinder in water parameters, are shown in Figs. 5 and 6, respectively. The
was evaluated numerically by the use of E8Q) for differ- ~ assumption here is that, 1=, 1=y, and y; ,= ¥, 2= ¥, SO
ent materials. The materials for which graphic results ardghat the compressional and shear absorption coefficients are
shown in Figs. 1 through 4, and the values of the density anthe same for the first and second primary waves, respec-
longitudinal and shear wave velocities used in the simulatively. The sound absorption was considered of constant am-
tions are listed in Table I. These have all been assumed to k@itude versus frequency describing the behavior of many
lossless materials immersed in water with a sound velocity opolymeric materials.
1480 m st and a density of 1000 Kg m.

Three-dimensional plots of thé;(x;,X,) function are per- V. DISCUSSION
formed and the results cover the range defined by the condi- Equation(20) indicates that the total radiation force expe-
tion |w,—w,| < w1+ w, SO that ox=|x;—X,| <x;+X,. Hence, rienced by the cylinder is not the mere sum of the radiation

IV. NUMERICAL RESULTS

4,
3
Yy
2
1
0| FIG. 5. (Color online The dynamic radiation
0.1 1 force function for an absorbent lucite cylinder
immersed in water. The black arrows point to the
0.08 splitting of the resonance peaks that is more
prominent for this material.
¢ 0.06
0.04
0.02
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FIG. 6. (Color online The same as in Fig. 5, but for an absorbent polyethylene cylinder. The damping of all peaks at high frequency
appears more clearly for this material, whose absorption coefficients are greater than lucite.

forces due to each incident plane progressive wave. There @ncept of the scattering cross-sectierthat characterizes

an additional term associated with the coupling between th#éhe scattering strength of the cylinder, thus radiation force.
two forces called the dynamic radiation force. Equaiid®  When the incident wave strikes the elastic cylinder, it gener-
shows that the dynamic radiation force is proportional to theates a surface wave that is propagated on its surfagp
cross-sectional area of the cylinder and the dynamic energyhis wave decays progressively and reradiates a bulk wave
density, which is related to the intensity of the incident fields.in the fluid medium surrounding the cylinder. The resonances
The dynamic radiation force functioviy(x;,x,) is a coeffi- ~ are the result of surface waves that reradiate scattered bulk
cient determined by the scattering and absorption propertie¥@ves in the fluid. Thus, maxima and minima peaks are both

of the cylinder and its surrounding mediufm this case ue to resonances of thga S.Olid cyIinder.
wate Ityis also a function ofk angx andﬁvr\]/henx ap The scattering of the incident wave is formerly due to the
. 1 21 1 -

proachesx, the expression of(x;,x,) is reduced to the presence of the object along its path and tfssattering

tati diation functiofy h | inal profile is instantaneous. In addition, under the influence of
static radiation force functiofY,(x) where only one single e \ave(transfer of momentuin the object itself begins to

sound plane wave is presented. _ o vibrate and produces a soufwf ultrasoundl field, thus, ad-

~ Notice that in the section of the static radiation force func-gitional acoustic scattering. Therefore, the total scattered am-
tion where the,,(x) curve is relatively flat, we see very little pjitude may be considered as the sum of two contributions:
change inYy(x1,Xz), SO thatYy(Xy,Xp) could be approximated  the rigid contribution, which is the response of a totally im-

to Y,(x). However, wherdx increases, the value 8f(x;,X;)  penetrable object, and the elastic contribution, which ac-
starts to deviate fron¥(x), which drastically change radia- counts for the resonances and depends on the shape and me-
tion force (Figs. 1-6. This effect is clearly shown in the chanical characteristics of the object. However, the total
figures at some maxima and minima of the curves. Hence, 8cattering cross section of the cylinder is not only the sum of

is essential to use the expressionYgfx,,x,) given by Eq. the “rigid” and “elastic” scattering cross sections; there is an
(30). interference term between these two contributid3$)].

In the figures, the positions of minima and maxima areHence, when bulk waves are out of phase with the rigid term,
determined by the cylinder’'s material properties. In order toresonance appears as minima instead of maxima peaks in the
give a theoretical interpretation of these maxima and minimdotal scattering cross section curves. Moreover, the width of
peaks in theYy(x;,X,) curves, it is essential to introduce the any resonance peak is related to the time in which surface

016306-8
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waves spend inside the cylinder to be transformed to bulkrequencies and immersed in a nonviscous fldide., Eq.
waves. This period is known as the “dwell timet0]. So, for ~ (30)]. Analytical equations are derived and numerical calcu-
sharp peaks, surface waves are rapidly attenuated to cred#gions of the dynamic radiation force function are presented
bulk waves. for elastic and viscoelastic materials. It is shown that the
radiation force is no longer static and has an oscillatory com-
ponent when the modulation increases, hence resulting in the

VI. CONCLUSION

The major achievement of this work is to calculate theo-
retically the dynamic components of the radiation force ex-
perienced by a solid cylinder placed in an amplitude-
modulated sound(or ultrasoungl field (produced by

splitting of some of the minima and maxima resonance

peaks.
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