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A body insonified by a sound field is known to experience a steady force that is called the acoustic radiation
force. This force can also be dynamic or oscillatory, knowing that the intensity of the incident sound field
changes over timesamplitude modulationd. The present paper develops the theory of dynamic radiation force
experienced by a solid cylinder immersed in an ideal fluid. Analytical solutions of the equations for the
dynamic force are derived. The equations provide analytical radiation force dependencies on the acoustic field
and medium parameters. The case of compressional and shear waves’ absorption in the solid material of the
cylinder is also discussed. It is shown here that radiation force is no longer static and cannot be treated as a
steady-state phenomenon.
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I. INTRODUCTION

The acoustic radiation forcef1–13g is interpreted as the
time-averaged force acting on an object in a sound field. This
force is caused by a change in the energy density of an inci-
dent acoustic field. Thus, an object in the wave path that
absorbs or reflects sound energy is subjected to the acoustic
radiation force. The radiation force on a sphere or a cylinder
has been studied extensively. A detailed theoretical work on a
rigid sphere was presented by Kingf14g and extendedf15g to
include the effect of the sphere compressibility. Later, Hase-
gawa and Yosiokaf16g provided theoretical and experimen-
tal work on the radiation force experienced by an isotropic
elastic sphere. The acoustic radiation force on a rigid cylin-
der was also investigatedf17g and extended to take into ac-
count its elasticityf18g. The effects of dissipative mecha-
nisms, such as viscosity and heat conduction, were also
studied and it was found that they drastically influence the
acoustic radiation forcef19g.

The acoustic radiation force is usually asteady force,
given that the intensity of the incident field does not change
over time. It has been shown that the radiation force can also
be dynamicsoscillatoryd, if the intensity of the incident field
is modulatedf20g. There are various ways to construct a
modulated sound field. For example, one can use a single
ultrasound beam whose amplitude is modulated at low fre-
quency, or two interfering ultrasound beams driven at
slightly different frequenciessdual beam moded, to produce a
dynamic radiation force at their intersection. In the first case,
the modulation of a single beam results in a field that is not
spatially confined and exerts a dynamic radiation force on
any objectsincluding the transducer itselfd that happens to be
in the beam path. In the second case, the dynamic radiation
force is confined to a small region where the two ultrasound
beams intersect.

Recently, the dynamic radiation force of ultrasound has
been used to image the elasticity of an object, which could
have great potential in medical diagnosisf21–24g. For ex-
ample, in a new technique called vibro-acoustography,
acoustic emissions from an object excited by the dynamic
radiation force were used to reconstruct an image related to
its mechanical propertiesssuch as stiffnessd f22g. This tech-
nique has been successfully used to image artery calcifica-
tions f22,25g, breast micro-calcificationsf26g, calcium de-
posit on heart valvesf27g, human calcaneus and hipf28g,
and brachytherapy metal seedsf29,30g. More recently, the
dynamic radiation force of ultrasound was also used to vi-
brate embedded spheres to estimate the shear modulus and
viscosity of the medium in the neighborhood of the sphere
f31g. In the field of material sciences the dynamic radiation
force was used in determining resonance frequencies of dif-
ferently shaped objectsf32g and evaluating Young’s modulus
f33g.

Despite the extensive use of the dynamic radiation force,
very little work has been done on its theory. The aim of this
work is to develop the theory of thedynamicacoustic radia-
tion force, using a solid cylinder as an example. To the best
of the authors’ knowledge, the theoretical analysis of the
dynamic radiation force on cylinders has never been studied
before. We present the theory to calculate the dynamic radia-
tion force on a solid cylinder insonified by two ultrasound
waves driven at slightly different frequencies and interfering
in a small region. It was assumed that the wave numbers of
the incident waves are coplanar and the cylinder was placed
entirely within that region. The dual beam acoustic scattering
from the cylinder is solved first. Then analytical equations
describing the dynamic components of radiation force are
presented. The effects of longitudinal and shear waves’ ab-
sorption inside the cylinder are also discussed. Numerical
simulations are presented indicating the ways in which the
dynamic radiation force functionYd can be affected by the
variations of the cylinder’s mechanical parameters.
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II. ACOUSTIC SCATTERING THEORY OF TWO PLANE
WAVES FROM THE CYLINDER

IN AN IDEAL FLUID

Usually, the process of computing the acoustic radiation
force is divided into two steps:s1d solving the acoustic scat-
tering problem, ands2d determining the radiation-stress ten-
sor in the fluid. Following the work previously donef18g, we
derive the acoustic radiation force experienced by a solid
cylinder excited by two plane waves; the velocity potential
of the plane waves represented in cylindrical coordinates
sr ,u ,zd can be written asf34g

fi = Ao
n=0

`

«ns− jdnJnsk1rdcossnudejv1t

+ Ao
n=0

`

«ns− jdnJnsk2rdcossnudejv2t, s1d

whereA is the amplitude,k1 and k2 are the wave numbers
sdenoted later byki , i =1,2d, Jnskird is the Bessel function of
the first kind of ordern and argumentkir, and«n is defined
by «0=1 and«n=2 sn=1,2,3,…d.

The scattered waves may be expressed as

fs = Ao
n=0

`

«ns− jdnd1,nHn
s2dsk1rdcossnudejv1t

+ Ao
n=0

`

«ns− jdnd2,nHn
s2dsk2rdcossnudejv2t, s2d

whereHn
s2dskird is the Hankel function of the second kind of

order n and argumentkir. The scattering coefficients are
given by

di,n =
− Fi,nJnsxid + xiJn8sxid

Fi,nHn
s2dsxid − xiHn

s2d8sxid
, i = 1,2, s3d

wherexi =ki a, a being the radius of the cylinder. We define
the coefficientsai,n andbi,n as the real and imaginary parts
of di,n, respectively.

The coefficientsFi,n are given by

Fi,n =
xi,2

2 r

2r* F An − Bn

Cn − Dn
G , s4d

wherer andr* are the densities of the fluid and the cylinder,
respectively, xi,1=xic/c1, xi,2=xic/c2, c is the speed of
sound in fluid, andc1 andc2 are the longitudinal and shear
wave velocities inside the cylinder material, respectively,
with

An =
Lnsxi,1d

Lnsxi,1d + 1
; Bn =

n2

Lnsxi,2d + n2 − 1
2xi,2

2 ;

Cn =
Lnsxi,1d + n2 − 1

2xi,2
2

Lnsxi,1d + 1
; s5d

Dn =
n2sLnsxi,2d + 1d

Lnsxi,2d + n2 − 1
2xi,2

2 ;

whereLnsxi,kd=f−xi,kJn8sxi,kd /Jnsxi,kdg , i =1,2, k=1,2.
The total velocity potential is then

f = fi + fs

= Ao
n=0

`

«ns− jdnfU1,nsk1rd + jV1,nsk1rdgcossnudejv1t

+ Ao
n=0

`

«ns− jdnfU2,nsk2rd + jV2,nsk2rdgcossnudejv2t, s6d

where U1,n,V1,n,U2,n,V2,n and their derivatives are defined
as

U1,n = s1 + a1,ndJnsk1rd + b1,nYnsk1rd,

U2,n = s1 + a2,ndJnsk2rd + b2,nYnsk2rd,

Ul,n8 =
dfU1,nsk1rdg

dfk1rg
,

U2,n8 =
dfU2,nsk2rdg

dfk2rg
,

s7d
V1,n = b1,nJnsk1rd − a1,nYnsk1rd,

V2,n = b2,nJnsk2rd − a2,nYnsk2rd,

V1,n8 =
dfV1,nsk1rdg

dfk1rg
,

V2,n8 =
dfV2,nsk2rdg

dfk2rg
.

From both Eqs.s6d and s7d we have

C = Reffg = Ao
n=0

`

«nRn cossnud, s8d

andRn is expressed by

Rn = Refs− jdnfU1,nsk1rd + jV1,nsk1rdgejv1t + s− jdn

3fU2,nsk2rd + jV2,nsk2rdgejv2tg. s9d

III. DYNAMIC RADIATION FORCE EXPERIENCED
BY THE CYLINDER

The radiation force is calculated by averaging the net
force on the cylinder over time. To compute the dynamic
component of the radiation force, the assumption in this case
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is that uv1−v2u!v1+v2 so that the radiation force has a
slow time variation at the low-frequencyDv. To discriminate
this slow variation from the total radiation force, we use the
short-term time average of an arbitrary functionxstd over the
interval of T at time t, defined askxstdl=s1/Tdet−T/2

t+T/2xstddt
f35g, where 2p / sv1+v2d!T!2p / uv1−v2u.

Thus, it can be proved that

kRnRn+1l = 1
2sU1,nV1,n+1 + U2,nV2,n+1 − V1,nU1,n+1

− V2,nU2,n+1d + 1
2sU1,nU2,n+1 − U2,nU1,n+1

+ V1,nV2,n+1 − V2,nV1,n+1dsinsDvtd + 1
2sU1,nV2,n+1

+ U2,nV1,n+1 − V1,nU2,n+1 − V2,nU1,n+1dcossDvtd,

s10d

kRn8Rn+18 lukir
= 1

2sU1,n8 V1,n+18 + U2,n8 V2,n+18 − V1,n8 U1,n+18

− V2,n8 U2,n+18 d + 1
2sU1,n8 U2,n+18 − U2,n8 U1,n+18

+ V1,n8 V2,n+18 − V2,n8 V1,n+18 dsinsDvtd

+ 1
2sU1,n8 V2,n+18 + U2,n8 V1,n+18 − V1,n8 U2,n+18

− V2,n8 U1,n+18 dcossDvtd,

kRnRn+18 lukir
= 1

2sU1,nV1,n+18 + U2,nV2,n+18 − V1,nU1,n+18

− V2,nU2,n+18 d + 1
2sU1,nU2,n+18 − U2,nU1,n+18

+ V1,nV2,n+18 − V2,nV1,n+18 dsinsDvtd

+ 1
2sU1,nV2,n+18 + U2,nV1,n+18 − V1,nU2,n+18

− V2,nU1,n+18 dcossDvtd,

kRn8Rn+1lukir
= 1

2sU1,n8 V1,n+1 + U2,n8 V2,n+1 − V1,n8 U1,n+1

− V2,n8 U2,n+1d + 1
2sU1,n8 U2,n+1 − U2,n8 U1,n+1

+ V1,n8 V2,n+1 − V2,n8 V1,n+1dsinsDvtd

+ 1
2sU1,n8 V2,n+1 + U2,n8 V1,n+1 − V1,n8 U2,n+1

− V2,n8 U1,n+1dcossDvtd.

The radiation force per unit lengthkFl in the direction of
the wave propagation is expressed by

kFl = kFrl + kFul + kFr,ul + kFtl, s11d

where

kFrl =K−
1

2
arE

0

2p S ]C

]r
D

r=a

2

cosu duL
= − 2paruAu2o

n=0

`

kRn8Rn+18 lur=a

= −
pruAu2

a Fo
n=0

`

fx1
2sU1,n8 V1,n+18 − V1,n8 U1,n+18 d

+ x2
2sU2,n8 V2,n+18 − V2,n8 U2,n+18 d + x1x2sU1,n8 U2,n+18

− U2,n8 U1,n+18 + V1,n8 V2,n+18 − V2,n8 V1,n+18 d sin sDvtd

+ x1x2sU1,n8 V2,n+18 + U2,n8 V1,n+18 − V1,n8 U2,n+18

− V2,n8 U1,n+18 d cossDvtdgG , s12d

FIG. 1. sColor onlined The dynamic radiation
force function(Ydsx1,x2d) curve for an aluminum
cylinder in water. The minimum atx1=6 anddx
=0 is split into two minima while varyingdxs0
ødxø0.1d. The black arrows point to the split-
ting of the resonance peaks.
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kFul =K 1

2a
rE

0

2p S ]C

]u
D

r=a

2

cosu duL
=

2pruAu2

a
o
n=0

`

nsn + 1dkRnRn+1l

=
pruAu2

a Fo
n=0

`

nsn + 1dssU1,nV1,n+1 + U2,nV2,n+1 − V1,nU1,n+1 − V2,nU2,n+1d + sU1,nU2,n+1 − U2,nU1,n+1 + V1,nV2,n+1

− V2,nV1,n+1dsinsDvtd + sU1,nV2,n+1 + U2,nV1,n+1 − V1,nU2,n+1 − V2,nU1,n+1dcossDvtddG , s13d

kFr,ul =KrE
0

2p S ]C

]r
D

r=a
S ]C

]u
D

r=a

sinu duL
= 2pruAu2o

n=0

`

fnkRnRn+18 lur=a − sn + 1dkRn8Rn+1lur=ag

=
pruAu2

a
o
n=0

`

hnfsx1U1,nV1,n+18 + x2U2,nV2,n+18 − x1V1,nU1,n+18 − x2V2,nU2,n+18 d + sx2U1,nU2,n+18 − x1U2,nU1,n+18 + x2V1,nV2,n+18

− x1V2,nV1,n+18 dsinsDvtd + sx2U1,nV2,n+18 + x1U2,nV1,n+18 − x2V1,nU2,n+18 − x1V2,nU1,n+18 dcossDvtdg

− sn + 1dfsx1U81,nV1,n+1 + x2U2,n+18 V2,n+1 − x1V1,n8 U1,n+1 − x2V2,n8 U2,n+1d + sx1U1,n8 U2,n+1 − x2U2,n8 U1,n+1

+ x1V1,n8 V2,n+1 − x2V2,n8 V1,n+1dsinsDvtd + sx1U1,n8 V2,n+1 + x2U2,n8 V1,n+1 − x1V1,n8 U2,n+1 − x2V2,n8 U1,n+1dcossDvtdgj, s14d

kFtl =K−
1

2c2arE
0

2p S ]C

]t
D

r=a

2

cosu duL
= −

2paruAu2

c2 o
n=0

` K ]Rn

]t

]Rn+1

]t
L

= −
pruAu2

a Fo
n=0

`

fx1
2sU1,nV1,n+1 − V1,nU1,n+1d

+ x2
2sU2,nV2,n+1 − V2,nU2,n+1d + x1x2sU1,nU2,n+1

− U2,nU1,n+1 + V1,nV2,n+1 − V2,nV1,n+1dsinsDvtd

+ x1x2sU1,nV2,n+1 + U2,nV1,n+1 − V1,nU2,n+1

− V2,nU1,n+1dcossDvtdgG . s15d

On the other hand, the velocity potential of the incident
waves could be expressed with this form:

fi = Asejv1t + ejv2td . s16d

The incident pressure can be expressed as

P̃istd = r
]fi

]t
= jArsv1e

jv1t + v2e
jv2td . s17d

The short-term time average of the energy iskEstdl
=kPi

2stdl /rc2, wherePistd=RefP̃istdg.

kPi
2stdl =

uAu2r2

T
E

t−T/2

t+T/2

sv1
2 sin2 v1t + v2

2 sin2 v2t

+ 2v1v2 sinv1t sinv2tddt,

kPi
2stdl = uAu2r2Sv1

2

2
+

v2
2

2
+ v1v2 cossDvtdD . s18d

The short-term time average of the energy becomes

kEstdl = 1
2rk1

2uAu2 + 1
2rk2

2uAu2 + rk1k2uAu2 cossDvtd. s19d

The radiation force for progressive waves is generally de-
noted bykFl=YpSckEl, whereYr is a dimensionless factor
called acoustic radiation force function and is the radiation
force per unit energy density and unit cross-sectional surface,
kEl is the mean energy density, andSc is the cross-sectional
area defined by the unit length of the cylinder multiplied by
its diameters2ad. Therefore,

2akEl = rk1
2auAu2 + rk2

2auAu2 + 2rk1k2auAu2 cossDvtd

and kFl is expressed by

kFl = 2akE1lYp1 + 2akE2lYp2 + 2akEdlYd. s20d
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The final expression for the radiation forcefi.e., Eq.s11dg
is obtained after replacingU1,n,V1,n,U2,n,V2,n and their de-
rivatives in Eqs.s12d–s15d with the use of the following re-
lations:

xZn8sxd = nZnsxd − xZn+1sxd,

xZn+18 sxd = xZnsxd − sn + 1dZn+1sxd, s21d

whereZnsxd stands forJnsxd or Ynsxd and

fJn+1sxdYnsxd − JnsxdYn+1sxdg =
2

px
. s22d

After some tough and tedious arithmetic manipulations, Eq.
s11d can be greatly simplified to be

kFl = 2as 1
2rk1

2uAu2dYp1 + 2as 1
2rk2

2uAu2dYp2

+ 2asrk1k2uAu2dY3 sinsDvtd

+ 2asrk1k2uAu2dY4 cossDvtd, s23d

where

Yp1 = −
2

x1
o
n=0

`

fa1,n + a1,n+1 + 2a1,na1,n+1 + 2b1,nb1,n+1g,

s24d

Yp2 = −
2

x2
o
n=0

`

fa2,n + a2,n+1 + 2a2,na2,n+1 + 2b2,nb2,n+1g,

s25d

FIG. 2. sColor onlined The dynamic radiation
force functionsYdsx1,x2dd curve for a brass cyl-
inder in water. The splitting phenomenon is also
observed at the minima ofYdsx1,x2d. The black
arrows point to the splitting of the resonance
peaks

FIG. 3. sColor onlined The dynamic radiation
force function (Ydsx1,x2d) curve for cadmium
cylinder in water. Significant changes of the dy-
namic radiation force function occur at the func-
tion minima while varyingdx. The black arrows
point to the splitting of the resonance peaks.
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Y3 =
p

2 o
n=0

`

hfJnsx2dJn+1sx1d − Jnsx1dJn+1sx2dgs2 + a1,n + a1,n+1

+ a2,n + a2,n+1d + fJnsx2dYn+1sx1d − Ynsx1dJn+1sx2dg

3sb1,n + b1,n+1d + fYnsx2dJn+1sx1d − Jnsx1dYn+1sx2dg

3sb2,n + b2,n+1d + fJnsx2dJn+1sx1d − Jnsx1dJn+1sx2d

+ Ynsx2dYn+1sx1d − Ynsx1dYn+1sx2dgsa1,na2,n+1

+ a2,na1,n+1 + b1,nb2,n+1 + b2,nb1,n+1d + fJnsx2dYn+1sx1d

− Ynsx1dJn+1sx2d + Jnsx1dYn+1sx2d − Ynsx2dJn+1sx1dg

3sa2,nb1,n+1 + b1,na2,n+1 − a1,nb2,n+1 − b2,na1,n+1dj,s26d

Y4 =
p

2 o
n=0

`

hfJnsx1dJn+1sx2d − Jnsx2dJn+1sx1dg

3sb1,n + b1,n+1 − b2,n − b2,n+1d + fJnsx2dYn+1sx1d

− Ynsx1dJn+1sx2dgsa1,n + a1,n+1d + fJnsx1dYn+1sx2d

− Ynsx2dJn+1sx1dgsa2,n + a2,n+1d + fJnsx2dYn+1sx1d

− Ynsx1dJn+1sx2d + Jnsx1dYn+1sx2d − Ynsx2dJn+1sx1dg

3sa1,na2,n+1 + a2,na1,n+1 + b1,nb2,n+1 + b2,nb1,n+1d

+ fJnsx2dJn+1sx1d − Jnsx1dJn+1sx2d + Ynsx2dYn+1sx1d

− Ynsx1dYn+1sx2dgsa1,nb2,n+1 + b2,na1,n+1 − b1,na2,n+1

− a2,nb1,n+1dj s27d

The first and second terms in Eq.s23d are the steady compo-
nents of radiation force caused by each individual plane pro-
gressive wave while the third and the fourth represent the
dynamic components of the force at the beating frequency.

The dynamic force can be rewritten as

kFdl = 2ark1k2uAu2ÎY3
2 + Y4

2 cossDvt − Fd

= 2akEdlYd cossDvt − Fd, s28d

where we define the dynamic energy density and dynamic
radiation force function as

kEdl = rk1k2uAu2, s29d

Yd = ÎY3
2 + Y4

2. s30d

The phase shift of the dynamic radiation force with respect
to the incident field is given byF=tan−1sY3/Y4d.

A. Special cases

1. The frequencies of the incident plane waves are equal

When the frequencies of the incident plane waves are
identical, x1=x2=x,a1,n=a2,n,b1,n=b2,n and the incident
waves are equivalent to a single plane wave with its ampli-
tude doubled. Therefore its energy is quadrupled, hence the
radiation force has four times higher amplitude. Equation
s23d becomes

kFl = 2as 1
2rk1

2uAu2dYp1 + 2as 1
2rk2

2uAu2dYp2 + 2asrk1k2uAu2dY4

s31d

and by using the wronksianf36g of the cylindrical Bessel
functionsfi.e., Eq.s22dg, and from Eqs.s24d–s27d, it can be
verified thatY3=0 andY4=Yp1=Yp2=Yp. Therefore, Eq.s31d
becomeskFl=4f2as 1

2rk2uAu2dYpg and the expression ofYp is
identical to the one given by Hasegawaet al. f18g.

2. Effect of absorption

Absorption of soundsor ultrasoundd in the cylinder mate-
rial can be included by introducing complex wave numbers
into the theoryf37g. This principle can be directly applied to
take into account compressional and shear wave absorption

FIG. 4. sColor onlined The dynamic radiation
force function(Ydsx1,x2d) curve for a gold cylin-
der in water. The black arrows point to the split-
ting of the resonance peaks.
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inside the cylinder material, especially for polymers. The
normalized absorption coefficients of compressionalsi.e.,
gi,1d and shear wavessi.e., gi,2d, respectively, are constant
quantities and independent of frequency, describing the be-
havior of many polymeric materials. In the theory described
above, and for viscoelastic materials, the termsxi,1 and xi,2
are replaced byx̃i,1 and x̃i,2 given by

x̃i,1 = xi,1s1 − jgi,1d,
s32d

x̃i,2 = xi,2s1 − jgi,2d.

IV. NUMERICAL RESULTS

TheYdsx1,x2d relationship for an elastic cylinder in water
was evaluated numerically by the use of Eq.s30d for differ-
ent materials. The materials for which graphic results are
shown in Figs. 1 through 4, and the values of the density and
longitudinal and shear wave velocities used in the simula-
tions are listed in Table I. These have all been assumed to be
lossless materials immersed in water with a sound velocity of
1480 m s−1 and a density of 1000 Kg m−3.

Three-dimensional plots of theYdsx1,x2d function are per-
formed and the results cover the range defined by the condi-
tion uv1−v2u!v1+v2 so thatdx= ux1−x2u!x1+x2. Hence,

the range is chosen by 0.5øx1ø10 and 0ødxø0.1 in in-
crements of 0.01.fThe condition here is that whendxùx1 or
x2, the dynamic component of the radiation force function
Ydsx1,x2d is undefined.g It was verified that the shape of the
Ydsx1,x2d curves does not vary significantly when the step
value is decreased. The step value used in the calculations is
extremely important because choosing a sufficiently small
step allows capturing the resonance peaks that are very
sharp.

The special case where the frequencies of the incident
plane waves are equalsi.e., dx=0d is also shown in the fig-
uresscurve in boldd, and the shape ofYdsx1,x2d corresponds
to the steady radiation force functionYp calculated by Hase-
gawaet al. f18g.

Calculations ofYdsx1,x2d for two viscoelastic materials
slucite and polyethylened were also evaluated.Ydsx1,x2d
curves of these materials, listed in Table II with their specific
parameters, are shown in Figs. 5 and 6, respectively. The
assumption here is thatg1,1=g2,1=g1 and g1,2=g2,2=g2, so
that the compressional and shear absorption coefficients are
the same for the first and second primary waves, respec-
tively. The sound absorption was considered of constant am-
plitude versus frequency describing the behavior of many
polymeric materials.

V. DISCUSSION

Equations20d indicates that the total radiation force expe-
rienced by the cylinder is not the mere sum of the radiation

TABLE I. Lossless materials’ parameters used in the numerical
calculations

Material

Mass
density

s103 kg/m3d

Compressional
velocity
c1 sm/sd

Shear
velocity
c2 sm/sd

Aluminum 2.7 6420 3040

Brass 8.1 3830 2050

Cadmium 8.6 2780 1500

Gold 19.3 3240 1200

TABLE II. Mechanical parameters of viscoelastic materials used
in the numerical calculations.

Material

Mass
density
skg/m3d

Compressional
velocity
c1sm/sd

Shear
velocity
c2sm/sd g1 g2

Lucite 1.191 2690 1340 0.0035 0.0053

Polyethylene 0.957 2430 950 0.0073 0.022

FIG. 5. sColor onlined The dynamic radiation
force function for an absorbent lucite cylinder
immersed in water. The black arrows point to the
splitting of the resonance peaks that is more
prominent for this material.
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forces due to each incident plane progressive wave. There is
an additional term associated with the coupling between the
two forces called the dynamic radiation force. Equations28d
shows that the dynamic radiation force is proportional to the
cross-sectional area of the cylinder and the dynamic energy
density, which is related to the intensity of the incident fields.
The dynamic radiation force functionYdsx1,x2d is a coeffi-
cient determined by the scattering and absorption properties
of the cylinder and its surrounding mediumsin this case
waterd. It is also a function ofx1 and x2, and whenx1 ap-
proachesx2 the expression ofYdsx1,x2d is reduced to the
static radiation force functionYpsxd where only one single
sound plane wave is presented.

Notice that in the section of the static radiation force func-
tion where theYpsxd curve is relatively flat, we see very little
change inYdsx1,x2d, so thatYdsx1,x2d could be approximated
to Ypsxd. However, whendx increases, the value ofYdsx1,x2d
starts to deviate fromYpsxd, which drastically change radia-
tion force sFigs. 1–6d. This effect is clearly shown in the
figures at some maxima and minima of the curves. Hence, it
is essential to use the expression ofYdsx1,x2d given by Eq.
s30d.

In the figures, the positions of minima and maxima are
determined by the cylinder’s material properties. In order to
give a theoretical interpretation of these maxima and minima
peaks in theYdsx1,x2d curves, it is essential to introduce the

concept of the scattering cross-sections that characterizes
the scattering strength of the cylinder, thus radiation force.
When the incident wave strikes the elastic cylinder, it gener-
ates a surface wave that is propagated on its surfacef38g.
This wave decays progressively and reradiates a bulk wave
in the fluid medium surrounding the cylinder. The resonances
are the result of surface waves that reradiate scattered bulk
waves in the fluid. Thus, maxima and minima peaks are both
due to resonances of the solid cylinder.

The scattering of the incident wave is formerly due to the
presence of the object along its path and thissscatteringd
profile is instantaneous. In addition, under the influence of
the wavestransfer of momentumd, the object itself begins to
vibrate and produces a soundsor ultrasoundd field, thus, ad-
ditional acoustic scattering. Therefore, the total scattered am-
plitude may be considered as the sum of two contributions:
the rigid contribution, which is the response of a totally im-
penetrable object, and the elastic contribution, which ac-
counts for the resonances and depends on the shape and me-
chanical characteristics of the object. However, the total
scattering cross section of the cylinder is not only the sum of
the “rigid” and “elastic” scattering cross sections; there is an
interference term between these two contributionsf39g.
Hence, when bulk waves are out of phase with the rigid term,
resonance appears as minima instead of maxima peaks in the
total scattering cross section curves. Moreover, the width of
any resonance peak is related to the time in which surface

FIG. 6. sColor onlined The same as in Fig. 5, but for an absorbent polyethylene cylinder. The damping of all peaks at high frequency
appears more clearly for this material, whose absorption coefficients are greater than lucite.
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waves spend inside the cylinder to be transformed to bulk
waves. This period is known as the “dwell time”f40g. So, for
sharp peaks, surface waves are rapidly attenuated to create
bulk waves.

VI. CONCLUSION

The major achievement of this work is to calculate theo-
retically the dynamic components of the radiation force ex-
perienced by a solid cylinder placed in an amplitude-
modulated sound sor ultrasoundd field sproduced by
interfering two ultrasound beams driven at slightly different

frequenciesd, and immersed in a nonviscous fluidfi.e., Eq.
s30dg. Analytical equations are derived and numerical calcu-
lations of the dynamic radiation force function are presented
for elastic and viscoelastic materials. It is shown that the
radiation force is no longer static and has an oscillatory com-
ponent when the modulation increases, hence resulting in the
splitting of some of the minima and maxima resonance
peaks.
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